metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Butyltrichlorido{2-[(diisopropylammonio)methyl]phenyl}tin(IV) dichloromethane monosolvate

Adina Rotar,* Richard A. Varga and Malgorzata Staninska

Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos St, RO-400028, Cluj Napoca, Romania Correspondence e-mail: adinar@chem.ubbcluj.ro

Received 26 November 2010; accepted 3 December 2010

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.015 Å; disorder in main residue; R factor = 0.076; wR factor = 0.213; data-to-parameter ratio = 17.2.

The title compound, $[Sn(C_4H_9)(C_{13}H_{21}N)Cl_3]\cdot CH_2Cl_2$, was obtained by recrystallization of [2-(diisopropylaminometh $yl)phenyl]tin(IV) butyl dichloride from a <math>CH_2Cl_2/n$ -hexane mixture $(1:4 \nu/\nu)$ in the presence of ambient moisture. Partial hydrolysis led to the title compound, the hydrochloric acid adduct of the dichloride, having a pentacoordinated Sn atom with a trigonal-bipyramidal C₂SnCl₃ core. The N atom of the 2-[(diisopropylammonio)methyl]phenyl ligand forms a strong intramolecular N-H···Cl hydrogen bond, resulting in a zwitterionic species, $[2-({}^{i}Pr_2HN^+CH_2)C_6H_4]SnBuCl_3^-$ ·· CH_2Cl_2 . Disorder was found in the *n*-butyl group, which was refined as disordered over three positions, with site occupancies of 0.22 (1), 0.51 (1) and 0.27 (2).

Related literature

For related tin(IV) compounds, see: Varga *et al.* (2001, 2005, 2006); Varga & Silvestru (2007); Rotar *et al.* (2007, 2009); Rotar, Schuermann *et al.* (2008); Rotar, Varga & Silvestru (2008); Švec *et al.* (2010).

Experimental

Crystal data

$$\begin{split} & [\text{Sn}(\text{C}_4\text{H}_9)(\text{C}_{13}\text{H}_{21}\text{N})\text{Cl}_3] \cdot \text{CH}_2\text{Cl}_2 \\ & M_r = 558.39 \\ & \text{Triclinic, } P\overline{1} \\ & a = 10.654 \ (8) \text{ Å} \\ & b = 11.093 \ (9) \text{ Å} \\ & c = 12.406 \ (10) \text{ Å} \end{split}$$

 $\alpha = 115.594 (13)^{\circ}$ $\beta = 100.767 (15)^{\circ}$ $\gamma = 97.176 (15)^{\circ}$ $V = 1263.5 (17) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.54 \text{ mm}^{-1}$ T = 297 K

Data collection

Bruker SMART APEX CCD area-	9126 measured reflections
detector diffractometer	4416 independent reflections
Absorption correction: multi-scan	3122 reflections with $I > 2\sigma(I)$
(Bruker, 2000)	$R_{\rm int} = 0.074$
$T_{\min} = 0.544, \ T_{\max} = 0.769$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.076 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.213 & \text{independent and constrained} \\ S &= 1.02 & \text{refinement} \\ 4416 \text{ reflections} & \Delta\rho_{\text{max}} &= 1.43 \text{ e } \text{\AA}^{-3} \\ 257 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.73 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots Cl2$	0.86 (1)	2.37 (7)	3.208 (8)	165 (8)

 $0.45 \times 0.20 \times 0.18 \; \rm mm$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This work was supported by the Romanian Ministry of Education and Research (PD 443/2010/AR). AR gratefully acknowledges the assistance of PhD student Ioana Barbul and Dr Ciprian Raţ in the two-dimensional NMR experiments. We thank the National Center for X-ray Diffraction (Babes-Bolyai University, Cluj-Napoca) collecting the diffraction data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2332).

References

- Brandenburg, K. & Putz, H. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Rotar, A., Schuermann, M., Varga, R. A., Silvestru, C. & Jurkschat, K. (2008). Z. Anorg. Allg. Chem. 634, 1533–1536.

- Rotar, A., Varga, R. A., Jurkschat, K. & Silvestru, C. (2009). J. Organomet. Chem. 694, 1385–1392.
- Rotar, A., Varga, R. A. & Silvestru, C. (2007). Acta Cryst. C63, m355-m356.
- Rotar, A., Varga, R. A. & Silvestru, C. (2008). Acta Cryst. E64, m45.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Švec, P., Černošková, E., Padělková, Z., Růžička, A. & Holeček, J. (2010). J. Organomet. Chem. 695, 2475–2485.
- Varga, R. A., Rotar, A., Schuermann, M., Jurkschat, K. & Silvestru, C. (2006). *Eur. J. Inorg. Chem.* 7, 1475–1486.
- Varga, R. A., Schuermann, M. & Silvestru, C. (2001). J. Organomet. Chem. 623, 161–167.
- Varga, R. A. & Silvestru, C. (2007). Acta Cryst. C63, m48-m50.
- Varga, R. A., Silvestru, C. & Deleanu, C. (2005). Appl. Organomet. Chem. 19, 153–160.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, m56 [doi:10.1107/S1600536810050713]

Butyltrichlorido{2-[(diisopropylammonio)methyl]phenyl}tin(IV) dichloromethane monosolvate

A. Rotar, R. A. Varga and M. Staninska

Comment

During our work on hypercoordinated organotin(IV) compounds with $[2-(R_2NCH_2)C_6H_4]$ Sn fragments (Varga *et al.*, 2001, 2005, 2006, Rotar *et al.*, 2007, 2008, 2009) the title compound was isolated.

In an attempt to obtain single-crystals of the dichloride $[2-({}^{i}Pr_{2}NCH_{2})C_{6}H_{4}]SnBuCl_{2}$ (1), recrystallization from a $CH_{2}Cl_{2}/n$ -hexane mixture (1:4) in the presence of air afforded the HCl adduct 1.HCl.CH₂Cl₂. The nitrogen atom of the L^{CN} ligand $[L^{CN} = 2$ -(diisopropylaminomethyl)phenyl] is protonated and a new Sn—Cl bond is simultaneously formed, thus leading to the formation of a zwitterionic species, $[2-({}^{i}Pr_{2}HN^{+}CH_{2})C_{6}H_{4}]SnBuCl_{3}^{-}.CH_{2}Cl_{2}$. The presence of the HCl is probably due to partial hydrolysis of the diorganotin(IV) dihalide in the presence of ambient moisture from air.

The central tin atom is pentacoordinated with a distorted trigonal bipyramidal geometry (Fig. 1). The axial positions are occupied by two chlorine atoms [Cl1—Sn1—Cl2 = 178.50 (7)°], while the two carbon atoms from the two organic groups and a chlorine atom are placed in equatorial positions. The angles in the equatorial C₂SnCl system are situated in the range between 97.4 (13) and 145.8 (14) °, showing a strong deviation from the ideal value of 120°. The Cl2 atom forms a strong intramolecular hydrogen bond with H1 from the nitrogen atom [Cl2…H1 = 2.37 (7) Å].

Disorder was found in the *n*-butyl group. This was resolved over three positions with the components of the disorder having site a occupancy ratio of 0.21 (1):0.51 (2):0.27 (2) (see Refinement section; Fig. 2).

Experimental

A solution of BuLi in hexane (10.5 ml, 1.6*M*, 20% excess) was added dropwise to a stirred solution of 2-(*N*,*N*-diisopropylaminomethyl)benzene bromide (3.7 g, 13.7 mmol) in 100 ml of anhydrous hexane at room temperature under argon using Schlenk techniques. The reaction mixture was refluxed under stirring for four hours and then allowed to reach room temperature. The obtained liquid product was added dropwise under stirring to a cooled (195 K, -78°C) solution of BuSnCl₃ (1.8 ml, 11 mmol) in 50 ml of anhydrous hexane. After the organolithiun compound was added, the reaction mixture was stirred for 1 h at 195 K (-78°C), then overnight to reach room temperature. The solvent was removed *in vacuo*. The oily residue was recrystallized from CH₂Cl₂/n-hexane, in presence of air moisture, resulting in the isolation of [2-(ⁱPr₂HN⁺CH₂)C₆H₄]SnBuCl₃⁻. CH₂Cl₂ (1.67 g, 32.9%).

 NC*H*(CH₃)₂, ${}^{3}J_{HH} = 6.5$ Hz), 3.96 d (2*H*, -C*H*₂-, ${}^{3}J_{HH} = 4.3$ Hz), 7.49*m* (2*H*, *H*_{4,5}, C₆*H*₄), 7.65*m* (1*H*, *H*₃, C₆*H*₄), 7.71*m* (1*H*, *H*₆, C₆*H*₄), 9.22 s,br (1*H*, N*H*).

¹³C NMR (75.4 MHz, CDCl₃, 293.5K): 13.68 s (SnCH₂CH₂CH₂CH₂CH₃, ${}^{4}J_{SnC} = 7.8$ Hz), 18.73 s (NCH(*C*H₃)₂ [B]), 19.11 s (NCH(*C*H₃)₂ [A]), 25.95 s (SnCH₂CH₂CH₂CH₃, ${}^{3}J_{SnC} = 130.6$ Hz), 27.47 s (SnCH₂CH₂CH₂CH₂CH₃, ${}^{2}J_{SnC} = 51.1$ Hz), 37.40 s,br (SnCH₂CH₂CH₂CH₃), 51.07 s (-CH₂-), 52.90 s (NCH(CH₃)₂), 129.71 s (C₅, C₆H₄, ${}^{3}J_{SnC}$ 51.1 = Hz), 129.86 s (C₄, C₆H₄, ${}^{4}J_{SnC} = 16.3$ Hz), 132.15 s (C₁, C₆H₄), 134.77 s (C₃, C₆H₄, ${}^{3}J_{SnC} = 61.8$ Hz), 136.11 s (C₆, C₆H₄, ${}^{2}J_{SnC} = 80.1$ Hz), 154.98 s (C₂, C₆H₄).

Refinement

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93-0.98 Å and with $U_{iso}= 1.2$ or $1.5U_{eq}$ (C) for H. The methyl groups were allowed to rotate but not to tip. The H1 atom bonded to N1 was found in a difference map and refined with a restrained N—H distance of 0.86 (1) Å.

The *n*-butyl group was found to be severly disordered. Attempts to refine the chain as disordered over two moieties (with appropriate distance restraints for the C—C bonds) did not give satisfactory results with ADPs of neighboring atoms being icompatible even after application of severe restraints for the thermal ellipsoids. Disorder over three moieties allowed to avoid these problems. In the final refinement the butyl chain was refined as disordered over three sites with equivalent bonds from the disordered components restrained to have similar lengths length. The same U_{ij} parameters were used for atom C14/C14B/C14C, C15/C15B/C15C, C16/C16B/C16C and C17/C17B/C17C, leading to refined site occupancies of 0.21 (1):0.51 (2):0.27 (2).

Figures

Fig. 1. View of the title compound showing the atom-numbering scheme and the intramolecular hydrogen bond (black dashed line) with only the major component for the disordered *n*-butyl group. Displacement ellipsoids are drawn at the 30% probability level and H atoms as spheres of arbitrary radii.

Fig. 2. View of the disordered *n*-butyl group showing the atom-numbering scheme (major component with grey and the two minor components with white). Displacement ellipsoids are drawn at the 30% probability level (H atoms were omitted for clarity).

Butyltrichlorido{2-[(diisopropylammonio)methyl]phenyl}tin(IV) dichloromethane monosolvate

Crystal data $[Sn(C_4H_9)(C_{13}H_{21}N)Cl_3] \cdot CH_2Cl_2 \qquad Z = 2$

$M_r = 558.39$	F(000) = 564
Triclinic, <i>P</i> T	$D_{\rm x} = 1.468 {\rm Mg m}^{-3}$
Hall symbol: -p 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.654 (8) Å	Cell parameters from 1665 reflections
b = 11.093 (9) Å	$\theta = 2.4 - 20.1^{\circ}$
c = 12.406 (10) Å	$\mu = 1.54 \text{ mm}^{-1}$
$\alpha = 115.594 (13)^{\circ}$	T = 297 K
$\beta = 100.767 \ (15)^{\circ}$	Block, colourless
$\gamma = 97.176 \ (15)^{\circ}$	$0.45\times0.20\times0.18~mm$
$V = 1263.5 (17) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	4416 independent reflections
Radiation source: fine-focus sealed tube	3122 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.074$
phi and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (Bruker, 2000)	$h = -12 \rightarrow 12$
$T_{\min} = 0.544, \ T_{\max} = 0.769$	$k = -13 \rightarrow 13$
9126 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.076$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.213$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.1038P)^2 + 0.0754P]$ where $P = (F_o^2 + 2F_c^2)/3$
4416 reflections	$(\Delta/\sigma)_{\rm max} = 0.008$
257 parameters	$\Delta \rho_{max} = 1.43 \text{ e} \text{ Å}^{-3}$
40 restraints	$\Delta \rho_{min} = -0.73 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.4960 (8)	0.7632 (8)	0.8171 (7)	0.0490 (19)	
C2	0.4078 (8)	0.8089 (8)	0.8876 (7)	0.052 (2)	
C3	0.4102 (10)	0.7820 (10)	0.9900 (7)	0.068 (3)	
Н3	0.3545	0.8145	1.0401	0.082*	
C4	0.4950 (11)	0.7076 (11)	1.0147 (9)	0.079 (3)	
H4	0.4942	0.6882	1.0804	0.095*	
C5	0.5813 (11)	0.6613 (11)	0.9442 (10)	0.080 (3)	
Н5	0.6392	0.6124	0.9626	0.096*	
C6	0.5798 (10)	0.6891 (10)	0.8458 (9)	0.070 (3)	
Н6	0.6369	0.6570	0.7973	0.084*	
C7	0.3141 (8)	0.8942 (8)	0.8704 (7)	0.054 (2)	
H7A	0.3545	0.9547	0.8424	0.065*	
H7B	0.2999	0.9514	0.9501	0.065*	
C8	0.1153 (9)	0.6964 (9)	0.7985 (8)	0.061 (2)	
H8	0.1822	0.6500	0.8175	0.073*	
С9	0.0569 (11)	0.7551 (12)	0.9098 (10)	0.093 (3)	
H9A	0.1267	0.8024	0.9852	0.139*	
H9B	0.0012	0.6814	0.9118	0.139*	
H9C	0.0064	0.8181	0.9019	0.139*	
C10	0.0112 (9)	0.5909 (11)	0.6802 (9)	0.084 (3)	
H10A	-0.0587	0.6325	0.6632	0.126*	
H10B	-0.0232	0.5140	0.6910	0.126*	
H10C	0.0501	0.5602	0.6119	0.126*	
C11	0.0904 (9)	0.8991 (10)	0.7562 (8)	0.067 (2)	
H11	0.0007	0.8537	0.7457	0.080*	
C12	0.1211 (12)	1.0427 (11)	0.8664 (10)	0.098 (4)	
H12A	0.1148	1.0351	0.9395	0.147*	
H12B	0.0593	1.0926	0.8498	0.147*	
H12C	0.2084	1.0905	0.8791	0.147*	
C13	0.0929 (13)	0.9059 (15)	0.6384 (10)	0.109 (4)	
H13A	0.0260	0.9499	0.6199	0.163*	
H13B	0.0769	0.8145	0.5716	0.163*	
H13C	0.1773	0.9575	0.6483	0.163*	
C14	0.571 (6)	0.712 (5)	0.490 (3)	0.065 (6)	0.22
H14A	0.5530	0.6136	0.4589	0.078*	0.22
H14B	0.5079	0.7296	0.4342	0.078*	0.22
C15	0.702 (6)	0.754 (8)	0.477 (7)	0.089 (8)	0.22
H15A	0.7620	0.7795	0.5565	0.107*	0.22
H15B	0.7010	0.8400	0.4735	0.107*	0.22
C16	0.772 (6)	0.681 (6)	0.384 (5)	0.124 (10)	0.22
H16A	0.8528	0.7432	0.3967	0.148*	0.22
H16B	0.7955	0.6044	0.3948	0.148*	0.22

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C17	0.686 (9)		0.632 (10)		0.258 (7)		0.127	7 (10)	0	.22
H17A	0.6103		0.6701		0.2635		0.191	*	0	.22
H17B	0.6587		0.5331		0.2181		0.191	*	0	.22
H17C	0.7333		0.6591		0.2105		0.191	*	0	.22
C14B	0.587 (10)		0.664 (4)		0.511 (7)		0.065	5 (6)	0	.51
H14C	0.6522		0.6240		0.5402		0.078	8*	0	.51
H14D	0.5129		0.5900		0.4515		0.078	8*	0	.51
C15B	0.644 (4)		0.733 (3)		0.446 (3)		0.089	9 (8)	0	.51
H15C	0.7198		0.8063		0.5038		0.107	7*	0	.51
H15D	0.5797		0.7743		0.4161		0.107	7*	0	.51
C16B	0.684 (4)		0.634 (3)		0.340 (4)		0.124	4 (10)	0	.51
H16C	0.7401		0.5852		0.3687		0.148	3*	0	.51
H16D	0.6065		0.5662		0.2783		0.148	8*	0	.51
C17B	0.755 (3)		0.699 (4)		0.280(3)		0.127	7 (10)	0	.51
H17D	0.6927		0.7125		0.2216		0.191	[*	0	.51
H17E	0.8077		0.6408		0.2368		0.191	*	0	.51
H17F	0.8104		0.7862		0.3418		0.191	*	0	.51
C14C	0.600 (19)		0.687 (6)		0.512 (13)	0.065	5 (6)	0	.27
H14E	0.6634		0.6401		0.5342	,	0.078	8*	0	.27
H14F	0.5301		0.6190		0.4404		0.078	8*	0	.27
C15C	0.663 (7)		0.794 (6)		0.486 (5)		0.089	9 (8)	0	.27
H15E	0.7464		0.8457		0.5474		0.107	7*	0	.27
H15F	0.6072		0.8569		0.4877		0.107	7*	0	.27
C16C	0.685 (6)		0.724 (4)		0.360 (5)		0.124	4 (10)	0	.27
H16E	0.6005		0.6957		0.3002		0.148	8*	0	.27
H16F	0.7398		0.7924		0.3497		0.148	8*	0	.27
C17C	0.744 (8)		0.603 (6)		0.324(7)		0.127	7 (10)	0	27
H17G	0.6755		0.5202		0.2812		0.191	*	0	.27
H17H	0.7975		0.6054		0.3965		0.191	*	0	27
H17I	0.7974		0.6042		0.2696		0.191	*	0	27
C18	0.7688 (13)		0.2311 (16)		0.7029 (1	5)	0.131	1 (6)		
H18A	0 7283		0.1506		0 7073	.,	0.157	7*		
H18B	0.7266		0.2221		0.6226		0.157	7*		
Cl1	0 75445 (19)		0.9363(2)		0 79244 ((19)	0.059	94 (6)		
Cl2	0.2839 (2)		0.6520 (2)		0.5385 (2	()	0.064	14 (6)		
Cl3	0.4604(2)		0.9945(2)		0.65829 ((19)	0.054	19 (5)		
Cl4	0.7400(7)		0 3745 (6)		0.8168 (7	(->) ()	0.234	1 (4)		
Cl5	0.9241 (6)		0.2338 (7)		0.7127 (7))	0.214	1 (3)		
N1	0.1814(7)		0.2330(7) 0.8103(7)		0.7781 (6)	0.054	57 (18)		
H1	0.107(8)		0.773 (8)		0 707 (4))	0.062	7*		
Sn1	0.52253 (6)		0.79582 (6)		0.66440 ((5)	0.052	25 (3)		
5.11	0.52255 (0)		0.77002 (0)		0.00110 (()	0.002	20 (3)		
Atomic displaceme	ent parameters	$(Å^2)$								
i	U^{11}	U^{22}		U^{33}		U^{12}		U^{13}		U^{23}
C1 (0.039 (5)	0.055	(5)	0.045 (4))	0.004 (4)		0.005 (4)		0.020 (4)
C2 (0.043 (5)	0.055	(5)	0.047 (4))	0.010 (4)		0.004 (4)		0.017 (4)
C3 ().069 (6)	0.091	(7)	0.047 (5))	0.012 (5)		0.016 (4)		0.035 (5)

supplementary materials

C4	0.096 (8)	0.100 (8)	0.074 (6)	0.043 (7)	0.026 (6)	0.064 (6)
C5	0.081 (8)	0.090 (7)	0.090 (7)	0.035 (6)	0.004 (6)	0.063 (6)
C6	0.072 (7)	0.070 (6)	0.076 (6)	0.035 (5)	0.025 (5)	0.034 (5)
C7	0.044 (5)	0.058 (5)	0.043 (4)	0.011 (4)	0.010 (4)	0.009 (4)
C8	0.047 (5)	0.066 (5)	0.067 (5)	0.005 (4)	0.019 (4)	0.029 (5)
C9	0.075 (8)	0.103 (8)	0.086 (7)	-0.008 (6)	0.015 (6)	0.042 (7)
C10	0.052 (6)	0.086 (7)	0.078 (7)	-0.007 (5)	0.005 (5)	0.017 (6)
C11	0.045 (5)	0.077 (6)	0.080 (6)	0.020 (5)	0.017 (5)	0.037 (5)
C12	0.094 (9)	0.075 (7)	0.100 (8)	0.049 (6)	0.010(7)	0.017 (6)
C13	0.110 (10)	0.158 (12)	0.091 (8)	0.076 (9)	0.029 (7)	0.075 (9)
C14	0.087 (17)	0.046 (13)	0.066 (7)	0.035 (16)	0.034 (9)	0.019 (12)
C15	0.09 (2)	0.09 (2)	0.062 (19)	0.00(2)	0.042 (19)	0.004 (15)
C16	0.15 (3)	0.081 (18)	0.16 (2)	0.004 (19)	0.10(2)	0.06 (2)
C17	0.16 (3)	0.14 (3)	0.095 (16)	0.04 (2)	0.038 (18)	0.060 (18)
C14B	0.087 (17)	0.046 (13)	0.066 (7)	0.035 (16)	0.034 (9)	0.019 (12)
C15B	0.09 (2)	0.09 (2)	0.062 (19)	0.00(2)	0.042 (19)	0.004 (15)
C16B	0.15 (3)	0.081 (18)	0.16 (2)	0.004 (19)	0.10(2)	0.06 (2)
C17B	0.16 (3)	0.14 (3)	0.095 (16)	0.04 (2)	0.038 (18)	0.060 (18)
C14C	0.087 (17)	0.046 (13)	0.066 (7)	0.035 (16)	0.034 (9)	0.019 (12)
C15C	0.09 (2)	0.09 (2)	0.062 (19)	0.00(2)	0.042 (19)	0.004 (15)
C16C	0.15 (3)	0.081 (18)	0.16 (2)	0.004 (19)	0.10 (2)	0.06 (2)
C17C	0.16 (3)	0.14 (3)	0.095 (16)	0.04 (2)	0.038 (18)	0.060 (18)
C18	0.094 (10)	0.156 (13)	0.208 (16)	0.038 (9)	0.044 (10)	0.139 (13)
Cl1	0.0326 (11)	0.0740 (13)	0.0603 (12)	0.0032 (10)	0.0069 (9)	0.0261 (11)
Cl2	0.0525 (14)	0.0652 (13)	0.0581 (12)	0.0074 (11)	0.0045 (10)	0.0194 (11)
C13	0.0529 (13)	0.0512 (11)	0.0716 (13)	0.0172 (10)	0.0157 (10)	0.0374 (10)
Cl4	0.316 (10)	0.177 (5)	0.300 (8)	0.125 (6)	0.220 (8)	0.120 (5)
C15	0.163 (5)	0.303 (7)	0.364 (8)	0.147 (5)	0.150 (5)	0.264 (7)
N1	0.045 (4)	0.066 (4)	0.052 (4)	0.016 (4)	0.016 (3)	0.022 (4)
Sn1	0.0492 (4)	0.0576 (4)	0.0541 (4)	0.0190 (3)	0.0164 (3)	0.0262 (3)

Geometric parameters (Å, °)

C1—C6	1.385 (12)	C15—H15B	0.9700
C1—C2	1.396 (11)	C16—C17	1.48 (2)
C1—Sn1	2.137 (8)	C16—H16A	0.9700
C2—C3	1.421 (11)	C16—H16B	0.9700
C2—C7	1.506 (12)	C17—H17A	0.9600
C3—C4	1.376 (13)	С17—Н17В	0.9600
С3—Н3	0.9300	C17—H17C	0.9600
C4—C5	1.380 (14)	C14B—C15B	1.483 (18)
C4—H4	0.9300	C14B—Sn1	2.137 (12)
C5—C6	1.380 (13)	C14B—H14C	0.9700
С5—Н5	0.9300	C14B—H14D	0.9700
С6—Н6	0.9300	C15B—C16B	1.490 (18)
C7—N1	1.524 (11)	C15B—H15C	0.9700
С7—Н7А	0.9700	C15B—H15D	0.9700
С7—Н7В	0.9700	C16B—C17B	1.479 (18)
C8—N1	1.509 (11)	C16B—H16C	0.9700

C8—C10	1.529 (12)	C16B—H16D	0.9700
C8—C9	1.537 (14)	C17B—H17D	0.9600
С8—Н8	0.9800	С17В—Н17Е	0.9600
С9—Н9А	0.9600	C17B—H17F	0.9600
С9—Н9В	0.9600	C14C—C15C	1.48 (2)
С9—Н9С	0.9600	C14C—Sn1	2.139 (16)
C10—H10A	0.9600	C14C—H14E	0.9700
C10—H10B	0.9600	C14C—H14F	0.9700
C10—H10C	0.9600	C15C—C16C	1.49 (2)
C11—C13	1.500 (13)	С15С—Н15Е	0.9700
C11—C12	1.527 (13)	C15C—H15F	0.9700
C11—N1	1.535 (11)	C16C—C17C	1.48 (2)
C11—H11	0.9800	С16С—Н16Е	0.9700
C12—H12A	0.9600	C16C—H16F	0.9700
C12—H12B	0.9600	C17C—H17G	0.9600
C12—H12C	0.9600	С17С—Н17Н	0.9600
C13—H13A	0.9600	С17С—Н17І	0.9600
C13—H13B	0.9600	C18—C15	1.632 (14)
C13—H13C	0.9600	C18Cl4	1.721 (16)
C14—C15	1.481 (19)	C18—H18A	0.9700
C14—Sn1	2.141 (18)	C18—H18B	0.9700
C14—H14A	0.9700	Cl1—Sn1	2.547 (3)
C14—H14B	0.9700	Cl2—Sn1	2.608 (3)
C15—C16	1.485 (19)	Cl3—Sn1	2.406 (3)
C15—H15A	0.9700	N1—H1	0.857 (10)
C6—C1—C2	119.4 (8)	H17B—C17—H17C	109.5
C6—C1—Sn1	113.1 (6)	C15B—C14B—Sn1	114.6 (19)
C2—C1—Sn1	127.5 (6)	C15B—C14B—H14C	108.6
C1—C2—C3	118.7 (8)	Sn1—C14B—H14C	108.6
C1—C2—C7	125.5 (8)	C15B—C14B—H14D	108.6
C3—C2—C7	115.7 (8)	Sn1—C14B—H14D	108.6
C4—C3—C2	119.8 (9)	H14C—C14B—H14D	107.6
С4—С3—Н3	120.1	C14B—C15B—C16B	111 (2)
С2—С3—Н3	120.1	C14B—C15B—H15C	109.5
C3—C4—C5	121.5 (9)	C16B—C15B—H15C	109.5
C3—C4—H4	119.3	C14B—C15B—H15D	109.5
С5—С4—Н4	119.3	C16B—C15B—H15D	109.5
C6—C5—C4	118.5 (9)	H15C—C15B—H15D	108.1
С6—С5—Н5	120.7	C17B—C16B—C15B	113 (3)
С4—С5—Н5	120.7	C17B—C16B—H16C	108.9
C5—C6—C1	122.1 (9)	C15B—C16B—H16C	108.9
С5—С6—Н6	119.0	C17B—C16B—H16D	108.9
С1—С6—Н6	119.0	C15B—C16B—H16D	108.9
C2—C7—N1	114.1 (7)	H16C—C16B—H16D	107.7
С2—С7—Н7А	108.7	C16B—C17B—H17D	109.5
N1—C7—H7A	108.7	C16B—C17B—H17E	109.5
С2—С7—Н7В	108.7	H17D—C17B—H17E	109.5
N1—C7—H7B	108.7	C16B—C17B—H17F	109.5

supplementary materials

N1-C8-C10	110.1 (7)	H17E—C17B—H17F	109.5
N1—C8—C9	110.6 (8)	C15CC14CSn1	105 (3)
C10—C8—C9	111.8 (8)	C15C—C14C—H14E	110.8
N1—C8—H8	108.1	Sn1—C14C—H14E	110.8
С10—С8—Н8	108.1	C15C—C14C—H14F	110.9
С9—С8—Н8	108.1	Sn1—C14C—H14F	110.9
С8—С9—Н9А	109.5	H14E—C14C—H14F	108.9
С8—С9—Н9В	109.5	C14C—C15C—C16C	108 (4)
Н9А—С9—Н9В	109.5	C14C—C15C—H15E	110.2
С8—С9—Н9С	109.5	C16C—C15C—H15E	110.2
Н9А—С9—Н9С	109.5	C14C—C15C—H15F	110.1
Н9В—С9—Н9С	109.5	C16C—C15C—H15F	110.1
C8—C10—H10A	109.5	H15E—C15C—H15F	108.5
C8—C10—H10B	109.5	C17C—C16C—C15C	121 (5)
H10A—C10—H10B	109.5	C17C—C16C—H16E	107.0
C8—C10—H10C	109.5	C15C—C16C—H16E	107.0
H10A—C10—H10C	109.5	C17C—C16C—H16F	107.0
H10B—C10—H10C	109.5	C15C—C16C—H16F	107.0
C13—C11—C12	111.4 (10)	H16E—C16C—H16F	106.8
C13 - C11 - N1	110.8 (8)	C16C—C17C—H17G	109.5
C12— $C11$ — $N1$	112.6(7)	С16С—С17С—Н17Н	109.5
C13—C11—H11	107.2	H17G—C17C—H17H	109.5
C12—C11—H11	107.2	C16C - C17C - H17I	109.5
N1_C11_H11	107.2	H17G-C17C-H17I	109.5
C11 - C12 - H12A	109.5	H17H - C17C - H17I	109.5
C11 - C12 - H12R	109.5	C15-C18-C14	109.5 114 1 (10)
H12A_C12_H12B	109.5	C15-C18-H18A	108.7
$C_{11} - C_{12} - H_{12}C_{12}$	109.5	C_{14} C_{18} H_{18A}	108.7
H12A - C12 - H12C	109.5	C15-C18-H18B	108.7
H12B_C12_H12C	109.5	Cl4—C18—H18B	108.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5		107.6
C11 C13 H13R	109.5	$C_{8} = N_{1} = C_{7}$	107.0 114.0(7)
H13A C13 H13B	109.5	C_{8} N1 C11	114.9(7)
C11 C12 H12C	109.5	C_{0} N1 C_{11}	114.1(7) 112.2(7)
	109.5	C^{2} N1 H1	113.3(7)
H13A-C13-H13C	109.5	C7 N1 H1	106 (0)
ПІЗВ—СІЗ—ПІЗС С15—СІ4—Sml	109.5	C_{1} N1 U1	103 (0)
$C_{15} = C_{14} = S_{11}$	125 (4)	CII—NI—HI	100(0)
C15-C14-H14A	106.6	CI4B—ShI—CI	120.9 (17)
SnI—C14—H14A	106.6	C14B— $Sn1$ — $C14C$	/(3)
C15C14H14B	106.6		152 (5)
SnI—CI4—HI4B	106.6	C14B— $Sn1$ — $C14$	19 (2)
H14A—C14—H14B	106.5	CI = SnI = CI4	145.8 (14)
C14—C15—C16	132 (5)	C14C - Sn1 - C14	15 (5)
CI4—CI5—HI5A	104.4	C14B— $Sn1$ — $C13$	116.5 (18)
CIG-CIS-HISA	104.4	C1 - Sn1 - C13	116.5 (2)
C14—C15—H15B	104.4	C14C—Sn1—Cl3	111 (3)
C16—C15—H15B	104.4	C14—Sn1—C13	97.4 (13)
HISA—CIS—HISB	105.6	C14B—Sn1—Cll	93 (3)
C17—C16—C15	109 (7)	C1—Sn1—Cl1	89.0 (2)

С17—С16—Н16А	109.9	C14C—Sn1—C11	89 (5)
C15—C16—H16A	109.9	C14—Sn1—Cl1	95.1 (16)
C15-C16-H16B	109.9	Cl3—Sn1—Cl1	90.96 (9)
H16A—C16—H16B	108.3	C14B—Sn1—Cl2	88 (3)
С16—С17—Н17А	109.5	C1—Sn1—Cl2	89.5 (2)
С16—С17—Н17В	109.5	C14C—Sn1—Cl2	92 (5)
H17A—C17—H17B	109.5	C14—Sn1—Cl2	86.3 (16)
С16—С17—Н17С	109.5	Cl3—Sn1—Cl2	89.46 (9)
Н17А—С17—Н17С	109.5	Cl1—Sn1—Cl2	178.50 (7)
C6—C1—C2—C3	2.3 (12)	C15B—C14B—Sn1—C1	-158 (5)
Sn1—C1—C2—C3	-176.8 (6)	C15B—C14B—Sn1—C14	29 (6)
C6—C1—C2—C7	177.9 (8)	C15B—C14B—Sn1—Cl3	26 (8)
Sn1—C1—C2—C7	-1.2 (12)	C15B—C14B—Sn1—Cl1	-67 (7)
C1—C2—C3—C4	-2.4 (13)	C15B—C14B—Sn1—Cl2	114 (7)
C7—C2—C3—C4	-178.4 (9)	C6-C1-Sn1-C14B	30 (4)
C2—C3—C4—C5	1.8 (16)	C2-C1-Sn1-C14B	-151 (4)
C3—C4—C5—C6	-1.0 (17)	C6-C1-Sn1-C14C	24 (7)
C4—C5—C6—C1	0.9 (16)	C2—C1—Sn1—C14C	-157 (7)
C2—C1—C6—C5	-1.5 (14)	C6-C1-Sn1-C14	34 (3)
Sn1—C1—C6—C5	177.7 (8)	C2-C1-Sn1-C14	-147 (3)
C1—C2—C7—N1	88.7 (10)	C6—C1—Sn1—Cl3	-154.2 (6)
C3—C2—C7—N1	-95.6 (8)	C2—C1—Sn1—Cl3	25.0 (8)
Sn1—C14—C15—C16	154 (8)	C6—C1—Sn1—Cl1	-63.6 (6)
C14—C15—C16—C17	52 (13)	C2-C1-Sn1-Cl1	115.5 (7)
Sn1—C14B—C15B—C16B	-179 (5)	C6-C1-Sn1-Cl2	116.6 (6)
C14B—C15B—C16B—C17B	-174 (6)	C2—C1—Sn1—Cl2	-64.2 (7)
Sn1—C14C—C15C—C16C	-164 (7)	C15C—C14C—Sn1—C1	-147 (7)
C14C—C15C—C16C—C17C	-47 (12)	C15C—C14C—Sn1—C14	54 (9)
C10-C8-N1-C7	-160.6 (7)	C15C—C14C—Sn1—Cl3	31 (13)
C9—C8—N1—C7	75.3 (9)	C15C—C14C—Sn1—Cl1	-60 (11)
C10-C8-N1-C11	66.2 (9)	C15C—C14C—Sn1—Cl2	121 (11)
C9—C8—N1—C11	-57.9 (10)	C15—C14—Sn1—C14B	-91 (12)
C2—C7—N1—C8	49.8 (9)	C15—C14—Sn1—C1	-101 (6)
C2C7N1C11	-176.6 (7)	C15—C14—Sn1—C14C	-72 (18)
C13—C11—N1—C8	-126.3 (9)	C15—C14—Sn1—Cl3	86 (6)
C12-C11-N1-C8	108.2 (9)	C15—C14—Sn1—Cl1	-5(6)
C13—C11—N1—C7	99.7 (9)	C15—C14—Sn1—Cl2	175 (6)
C12—C11—N1—C7	-25.8 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
N1—H1…Cl2	0.86(1)	2.37 (7)	3.208 (8)	165 (8)

Fig. 1

